Abstract
BackgroundEpidemiological findings are inconsistent regarding the associations between air pollution exposure during pregnancy and gestational diabetes mellitus (GDM). Several limitations exist in previous studies, including potential outcome and exposure misclassification, unassessed confounding, and lack of simultaneous consideration of air pollution mixtures and particulate matter (PM) constituents. ObjectivesTo assess the association between GDM and maternal residential exposure to air pollution, and the joint effect of the mixture of air pollutants and PM constituents. MethodsDetailed clinical data were obtained for 395,927 pregnancies in southern California (2008–2018) from Kaiser Permanente Southern California (KPSC) electronic health records. GDM diagnosis was based on KPSC laboratory tests. Monthly average concentrations of fine particulate matter < 2.5 μm (PM2.5), <10 μm (PM10), nitrogen dioxide (NO2), and ozone (O3) were estimated using kriging interpolation of Environmental Protection Agency’s routine monitoring station data, while PM2.5 constituents (i.e., sulfate, nitrate, ammonium, organic matter and black carbon) were estimated using a fine-resolution geoscience-derived model. A multilevel logistic regression was used to fit single-pollutant models; quantile g-computation approach was applied to estimate the joint effect of air pollution and PM component mixtures. Main analyses adjusted for maternal age, race/ethnicity, education, median family household income, pre-pregnancy BMI, smoking during pregnancy, insurance type, season of conception and year of delivery. ResultsThe incidence of GDM was 10.9% in the study population. In single-pollutant models, we observed an increased odds for GDM associated with exposures to PM2.5, PM10, NO2 and PM2.5 constituents. The association was strongest for NO2 [adjusted odds ratio (OR) per interquartile range: 1.176, 95% confidence interval (CI): 1.147–1.205)]. In multi-pollutant models, increased ORs for GDM in association with one quartile increase in air pollution mixtures were found for both kriging-based regional air pollutants (NO2, PM2.5, and PM10, OR = 1.095, 95% CI: 1.082–1.108) and PM2.5 constituents (i.e., sulfate, nitrate, ammonium, organic matter and black carbon, OR = 1.258, 95% CI: 1.206–1.314); NO2 (78%) and black carbon (48%) contributed the most to the overall mixture effects among all krigged air pollutants and all PM2.5 constituents, respectively. The risk of GDM associated with air pollution exposure were significantly higher among Hispanic mothers, and overweight/obese mothers. ConclusionThis study found that exposure to a mixture of ambient PM2.5, PM10, NO2, and PM2.5 chemical constituents was associated with an increased risk of GDM. NO2 and black carbon PM2.5 contributed most to GDM risk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.