Abstract
The effects of co-occurrent pollutants on antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs) have raised attentions. However, how the different realistic exposure scenarios determining the effects of nanomaterials (NMs) on ARGs, was still unknown. Herein, the effects of NMs on ARGs under two realistic scenarios was investigated by short-term and long-term exposure modes. The presence of NMs with two different exposure modes could both promote the dissemination of ARGs, and the results were dose-, type- and duration-dependent. Compared to short-term exposure, the long-term exposure increased the abundances of ARGs with a greater extent except nano-ZnO. The long-term exposure increased the overall abundances of target ARGs by 2.9%–20.4%, while shot-term exposure caused the 3.4%–10.5% increment. The mechanisms of ARGs fates driven by NMs exposure were further investigated from the levels of microbial community shift, intracellular oxidative stress, and gene abundance. The variations of several potential bacterial hosts did not contribute to the difference in the ARGs transmission with different exposure modes because NMs types played more vital roles in the shift of microbial community compared to the exposure modes. For the short-term exposure, NMs were capable of triggering the QS by upregulating relevant genes, and further activated the production of surfactin and increased membrane permeability, resulting in the facilitation of ARGs transfer. However, NMs under long-term exposure scenario preferentially stimulated oxidative stress by generating more ROS, which then enhanced ARGs dissemination. Therefore, the exposure mode of NMs was one of the pivotal factors determining the ARGs fates by different triggering mechanisms. This study highlighted the importance of exposure scenario of co-occurrent pollutants on ARGs spread, which will benefit the comprehensive understanding of the actual environmental fates of ARGs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have