Abstract

Recently, digital mammography with a photon counting silicon detector has been developed. With the aim of reducing the exposure dose, we have proposed a new mammography system that uses a cadmium telluride series photon counting detector. In addition, we also propose to use a high energy X-ray spectrum with a tungsten anode. The purpose of this study was assessed that the effectiveness of the high X-ray energy spectrum in terms of image quality using a Monte Carlo simulation. The proposed photon counting system with the high energy X-ray is compared to a conventional flat panel detector system with a Mo/Rh spectrum. The contrast-to-noise ratio (CNR) is calculated from simulation images with the use of breast phantoms. The breast model phantoms differed by glandularity and thickness, which were determined from Japanese clinical mammograms. We found that the CNR values were higher in the proposed system than in the conventional system. The number of photons incident on the detector was larger in the proposed system, so that the noise values was lower in comparison with the conventional system. Therefore, the high energy spectrum yielded the same CNR as using the conventional spectrum while allowing a considerable dose reduction to the breast.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.