Abstract
Abstract In order to establish a link between the evolutionary history and the photochemical attributes, measurements of chlorophyll (Chl) a fluorescence were made in Cattleya warneri, C. shofieldiana and C. harrisoniana exposed to high irradiance for 5, 35, and 120 min (hereafter referred to as treatments T5, T35, and T120, respectively). The following questions are addressed: (1) Is the increased energy dissipation enough to counterbalance the excess energy that drives photosynthesis at different times of high irradiance exposure? (2) Is there an influence of the incidence and duration of light radiation on Cattleya species in full sunlight, compared to Cattleya species submitted to low irradiance? Higher relative variable fluorescence at the J-step (Vj) values followed by the lower quantum yield of electron transport (ψEo) indicate the accumulation of reduced Quinone A (QA) proportionally of sunflecks exposure time in C. warneri. The higher performance index (PIABS) and plasticity index values in C. schofieldiana indicate higher efficiency in modulating the photosynthetic apparatus under sunflecks. C. harrisoniana shows the lowest plasticity index, suppression of maximum fluorescence (Fm), and no recovery of PIABS after sunflecks. This study evidences the importance of physiological plasticity in the current geographic distribution of Cattleya in response to light pulses in species derived from fragmented habitats and the maintenance of shade to species of more primitive clades.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have