Abstract
This work investigates the integration of multiplicative calculus into gradient descent algorithms, including Adaptive Gradient algorithm (AdaGrad), Root Mean Squared Propagation (RMSProp), Nesterov Accelerated Gradient (NAG), and Momentum, to optimize exponential-quadratic-logarithmic composite functions with the positivity constrained. This research, conducted across five scenarios within the Constrained and Unconstrained Testing Environment (CUTEst), compares these multiplicative methods with their classical counterparts under a variety of constraints environments such as bounded, quadratic, and other types, and unconstrained environments. The results demonstrate the significant superiority of multiplicative-based algorithms, especially in unconstrained and bounded constrained scenarios, and demonstrate their potential for complex optimization tasks. Statistical analysis supports the observed performance advantages, indicating significant opportunities for optimization strate-gies in positive domains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Pure and Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.