Abstract
We propose a new paradigm for generating exponentially spread standard model Yukawa couplings from a new $U(1{)}_{F}$ gauge symmetry in the dark sector. Chiral symmetry is spontaneously broken among dark fermions that obtain nonvanishing masses from a nonperturbative solution to the mass gap equation. The necessary ingredient for this mechanism to work is the existence of higher-derivative terms in the dark $U(1{)}_{F}$ theory, or equivalently the existence of Lee--Wick ghosts, that (i) allow for a nonperturbative solution to the mass gap equation in the weak coupling regime of the Abelian theory and (ii) induce exponential dependence of the generated masses on dark fermion $U(1{)}_{F}$ quantum numbers. The generated flavor and chiral symmetry breaking in the dark sector is transferred to the standard model Yukawa couplings at the one-loop level via Higgs portal-type scalar messenger fields. The latter carry quantum numbers of squarks and sleptons. A new intriguing phenomenology is predicted that could be potentially tested at the LHC, provided the characteristic mass scale of the messenger sector is accessible at the LHC as is suggested by naturalness arguments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.