Abstract

In this paper, the issue of global exponential stability for a neutral type single neuron system with stochastic effects is investigated. Based on the linear matrix inequality (LMI) approach together with a novel Lyapunov–Krasovskii functional and stochastic analysis theory, sufficient conditions are derived to ensure that the considered system with time-varying delays is globally exponentially stable. Numerical examples are provided to demonstrate the efficiency and less conservatism of the derived theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.