Abstract

Abstract In this paper, the exponential stability analysis for the bidirectional associative memory neural network model with both time-varying delays and general activation functions is considered. Neither the boundedness and the monotony on these activation functions nor the differentiability on the time-varying delays are assumed. By employing Lyapunov functional and the linear matrix inequality (LMI) approach, several new sufficient conditions in LMI form are obtained to ensure the existence, uniqueness and global exponential stability of equilibrium point for the neural networks. Moreover, the exponential convergence rate index is estimated, which depends on the system parameters. The proposed stability results are less conservative than some recently known ones in the literature, which is demonstrated via an example with simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.