Abstract

This paper is concerned with the exponential stability and stabilization of memristive neural networks (MNNs) with delays. First, we present some generalized double-integral inequalities, which include some existing inequalities as their special cases. Second, combining with quadratic convex combination method, these double-integral inequalities are employed to formulate a delay-dependent stability condition for MNNs with delays. Third, a state-dependent switching control law is obtained for MNNs with delays based on the proposed stability conditions. The desired feedback gain matrices are accomplished by solving a set of linear matrix inequalities. Finally, the feasibility and effectiveness of the proposed results are tested by two numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.