Abstract
We construct generalized grand-canonical- and canonical Gibbs measures for a Hamiltonian system described in terms of a complex scalar field that is defined on a circle and satisfies a nonlinear Schrödinger equation with a focusing nonlinearity of order p < 6. Key properties of these Gibbs measures, in particular absence of “phase transitions” and regularity properties of field samples, are established. We then study a time evolution of this system given by the Hamiltonian evolution perturbed by a stochastic noise term that mimics effects of coupling the system to a heat bath at some fixed temperature. The noise is of Ornstein–Uhlenbeck type for the Fourier modes of the field, with the strength of the noise decaying to zero, as the frequency of the mode tends to ∞. We prove exponential approach of the state of the system to a grand-canonical Gibbs measure at a temperature and “chemical potential” determined by the stochastic noise term.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have