Abstract

When carbon dioxide is supersaturated in a liquid, carbon dioxide gas gets nucleated, expands, and floats on the surface of the liquid. This is a well-known phenomenon and is generally observed in carbonated drinks. This bubble generation phenomenon can be activated or suppressed by changing the properties of the solid surface in contact with the carbonated liquid. In this study, a method of exponentially increasing or suppressing the bubble generation of carbonated liquids by modifying the surface wettability is proposed. Equal amounts of carbonated liquid were poured into bare, superhydrophilic, and superhydrophobic cups to compare the amount of overflow and generated gas. In the superhydrophobic cup, bubbles were generated only at the start of pouring the carbonated liquid, after which no more bubbles were generated. When the same amount of liquid was poured into the bare cup, about 4.1% of the total mass overflowed, while in the case of superhydrophilic surfaces, about 34% overflowed. The generated gas from each cup also showed significant difference according to the surface properties. From the experimental results, it was concluded that the superhydrophobic surface can suppress bubble nucleation, thus, preventing the soda from overflowing. Furthermore, a fall in carbon dioxide concentration can be prevented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.