Abstract

The modification of polymer surface wettability is receiving increasing interest in recent years. As surface wettability affects the flowing resistance, and thus the separation ratio and/or mixing ratio of samples in different microchannels, the controlled modification of surface wettability is highly desirable. In this study, microfluidic channels with controlled surface wettability were achieved and fabricated using femtosecond (fs) laser direct ablation of polymethyl methacrylate at various fluences. Varied flow velocities and separation ratio of water in microfluidic channels have been successfully obtained through fs laser-induced modification in wetting characteristics of the microchannel surfaces. A concave flow front was observed in a microchannel with hydrophilic surface. Correspondingly, a convex flow front was observed with hydrophobic surface. For an untreated channel, a straight flow front was observed. These results would be attractive for various microfluidic chip applications, such as control of the reagent reaction through controlling liquid medium separation or control of mixing ratio in different channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call