Abstract

This study explores the potential existence of traversable wormholes influenced by a global monopole charge within the f(Q) gravity framework. To elucidate the characteristics of these wormholes, we conducted a comprehensive analysis of wormhole solutions employing three different forms of redshift function under a linear f(Q) model. Wormhole shape functions were derived for barotropic, anisotropic, and isotropic Equations of State (EoS) cases. However, in the isotropic EoS case, the calculated shape function failed to satisfy the asymptotic flatness condition. Additionally, we observed that our obtained shape functions adhered to the flaring-out conditions under an asymptotic background for the remaining EoS cases. Furthermore, we examined the energy conditions at the wormhole throat with a radius r0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$r_0$$\\end{document}. We noted the influences of the global monopole’s parameter η\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\eta $$\\end{document}, the EoS parameter ω\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\omega $$\\end{document}, and n in violating energy conditions, particularly the null energy conditions. Finally, we conducted a stability analysis utilizing the Tolman–Oppenheimer–Volkov (TOV) equation and found that our obtained wormhole solution is stable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.