Abstract

Since wood has recently acquired increasing attention from structural engineers due to its green and low-carbon attribute, a growing interest in understanding the intricate relationships between the microstructure of wood and the mechanical properties of building components. This study was aimed at investigating the wood micromechanical structure of plantation Chinese fir (Cunninghamia lanceolata (Lamb.) Hook), focusing on assessing the impact of microfibril angle (MFA), chemical components and crystallinity on cell wall strength. Understanding these microstructural features is crucial, as they directly influence the overall strength of timber. Hence, significant factors contributing to the mechanical properties of the wood, i.e., the S2 layer's thickness and microfibril angle, along with the crystallinity and cellulose content, were comprehensively examined. A model was proposed to quantitatively forecast wood cell wall mechanical properties using information about MFA, chemical components, and crystallinity. This model can be used to predict the mechanical performances of wood components based on these key structural characteristics due to the close strength relationship between the micro- and macro-structures of wood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.