Abstract

The architecture of the Critical Zone, including mobile regolith thickness and depth to the weathering front, is first order controlled by advance of a weathering front at depth and transport of sediment at the surface. Differences in conditions imposed by slope aspect in the Gordon Gulch catchment of the Boulder Creek Critical Zone Observatory present a natural experiment to explore these interactions. The weathering front is deeper and saprolite more decayed on north-facing than on south-facing slopes. Simple numerical models of weathering front advance, mobile regolith production, and regolith transport are used to test how weathering and erosion rates interact in the evolution of weathered profiles. As the processes which attempt are being made to mimic are directly tied to climate variables such as mean annual temperature, the role of Quaternary climate variation in governing the evolution of Critical Zone architecture can be explored with greater confidence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.