Abstract
Mesogenetic dissolution is a critical process in the evolution and preservation of pore spaces in carbonate reservoirs. While limestone dissolution has been extensively studied, there is a lack of research on the dissolution kinetics of dolomite reservoirs, particularly regarding differences in dissolution mechanisms and heterogeneity evolution across various pore structures. This study aims to investigate diagenesis processes and heterogeneity evolution patterns in dolomites with different pore structures by simulating reservoir dissolution using organic acids generated during kerogen cracking. Flow system dissolution experiments were conducted on four dolomites with varying pore structures in 0.2% acetic acid under high-temperature (T = 40–160 °C) and high-pressure (P = 10–50 MPa) conditions. The chemical composition of the fluid and pore structure images were analyzed using ICP-OES and X-ray computed microtomography, respectively. Pore size distribution and evolution were assessed through digital cores based on Micro-CT analysis, while fractal and multifractal analyses were employed to quantify the evolution of pore structure heterogeneity. The findings highlight the importance of an effective combination of early material base and subsequent organic acid dissolution in the formation and maintenance of deep, high-quality dolomite reservoirs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.