Abstract

Abstract During the 2019 Spring Forecasting Experiment in NOAA’s Hazardous Weather Testbed, two NWS forecasters issued experimental probabilistic forecasts of hail, tornadoes, and severe convective wind using NSSL’s Warn-on-Forecast System (WoFS). The aim was to explore forecast skill in the time frame between severe convective watches and severe convective warnings during the peak of the spring convective season. Hourly forecasts issued during 2100–0000 UTC, valid from 0100 to 0200 UTC demonstrate how forecasts change with decreasing lead time. Across all 13 cases in this study, the descriptive outlook statistics (e.g., mean outlook area, number of contours) change slightly and the measures of outlook skill (e.g., fractions skill score, reliability) improve incrementally with decreasing lead time. WoFS updraft helicity (UH) probabilities also improve slightly and less consistently with decreasing lead time, though both the WoFS and the forecasters generated skillful forecasts throughout. Larger skill differences with lead time emerge on a case-by-case basis, illustrating cases where forecasters consistently improved upon WoFS guidance, cases where the guidance and the forecasters recognized small-scale features as lead time decreased, and cases where the forecasters issued small areas of high probabilities using guidance and observations. While forecasts generally “honed in” on the reports with slightly smaller contours and higher probabilities, increased confidence could include higher certainty that severe weather would not occur (e.g., lower probabilities). Long-range (1–5 h) WoFS UH probabilities were skillful, and where the guidance erred, forecasters could adjust for those errors and increase their forecasts’ skill as lead time decreased. Significance Statement Forecasts are often assumed to improve as an event approaches and uncertainties resolve. This work examines the evolution of experimental forecasts valid over one hour with decreasing lead time issued using the Warn-on-Forecast System (WoFS). Because of its rapidly updating ensemble data assimilation, WoFS can help forecasters understand how thunderstorm hazards may evolve in the next 0–6 h. We found slight improvements in forecast and WoFS performance as a function of lead time over the full experiment; the first forecasts issued and the initial WoFS guidance performed well at long lead times, and good performance continued as the event approached. However, individual cases varied and forecasters frequently combined raw model output with observed mesoscale features to provide skillful small-scale forecasts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call