Abstract

Abstract During the 2021 Spring Forecasting Experiment (SFE), the usefulness of the experimental Warn-on-Forecast System (WoFS) ensemble guidance was tested with the issuance of short-term probabilistic hazard forecasts. One group of participants used the WoFS guidance, while another group did not. Individual forecasts issued by two NWS participants in each group were evaluated alongside a consensus forecast from the remaining participants. Participant forecasts of tornadoes, hail, and wind at lead times of ∼2–3 h and valid at 2200–2300, 2300–0000, and 0000–0100 UTC were evaluated subjectively during the SFE by participants the day after issuance, and objectively after the SFE concluded. These forecasts exist between the watch and the warning time frame, where WoFS is anticipated to be particularly impactful. The hourly probabilistic forecasts were skillful according to objective metrics like the fractions skill score. While the tornado forecasts were more reliable than the other hazards, there was no clear indication of any one hazard scoring highest across all metrics. WoFS availability improved the hourly probabilistic forecasts as measured by the subjective ratings and several objective metrics, including increased POD and decreased FAR at high probability thresholds. Generally, expert forecasts performed better than consensus forecasts, though expert forecasts overforecasted. Finally, this work explored the appropriate construction of practically perfect fields used during subjective verification, which participants frequently found to be too small and precise. Using a Gaussian smoother with σ = 70 km is recommended to create hourly practically perfect fields in future experiments. Significance Statement This work explores the impact of cutting-edge numerical weather prediction ensemble guidance (the Warn-on-Forecast System) on severe thunderstorm hazard outlooks at watch-to-warning time scales, typically between 1 and 6 h of lead time. Real-time forecast products in this time frame are currently provided on an as-needed basis, and the transition to continuous probabilistic forecast products across scales requires targeted research. Results showed that hourly probabilistic participant forecasts were skillful subjectively and statistically, and that the experimental guidance improved the forecasts. These results are promising for the implementation and value of the Warn-on-Forecast System to provide improved hazard timing and location guidance within severe weather watches. Suggestions are made to aid future subjective evaluations of watch-to-warning-scale probabilistic forecasts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call