Abstract

Simple SummaryThe European grapevine moth (EGVM) Lobesia botrana (Lepidoptera: Tortricidae) attacks vineyards in Europe, the Middle East, and North and South America. Global movement toward sustainable agriculture urges the development of environmentally friendly tools that can replace traditional pesticides. Entomopathogenic nematodes (EPNs) are well-known biological control agents against various arthropod pests. The EPNs act together with symbiotic bacteria that produce natural products with insecticidal potential. Novel formulations and application technology allow their application against aerial pests, including those associated with vineyards. This study investigated the viability of four EPN species and their corresponding bacteria derivates (unfiltered ferment, UF, or cell-free supernatant, CFS) against EGVM (larval and pupa instars). The results revealed that all EPN species killed various EGVM larval stages. Killing pupae required a higher number of IJs than controlling larvae. Steinernema carpocapsae registered the most promising results, killing ~50% L1 and >75% L3/L5 in 2 days. The use of the bacterial bioactive compounds achieved similar results, with UF registering higher activity than CFS. Overall, we demonstrated that both EPN and bacterial bioproducts have a great potential to control EGVM in sustainable viticulture. Further research in co-formulation with adjuvants is required to ensure their survival in the aboveground grapevine areas. The European grapevine moth (EGVM) Lobesia botrana (Lepidoptera: Tortricidae) is a relevant pest in the Palearctic region vineyards and is present in the Americas. Their management using biological control agents and environmentally friendly biotechnical tools would reduce intensive pesticide use. The entomopathogenic nematodes (EPNs) in the families Steinernematidae and Heterorhabditidae are well-known virulent agents against arthropod pests thanks to symbiotic bacteria in the genera Xenorhabdus and Photorhabdus (respectively) that produce natural products with insecticidal potential. Novel technological advances allow field applications of EPNs and those bioactive compounds as powerful bio-tools against aerial insect pests. This study aimed to determine the viability of four EPN species (Steinernema feltiae, S. carpocapsae, S. riojaense, and Heterorhabditis bacteriophora) as biological control agents against EGVM larval instars (L1, L3, and L5) and pupae. Additionally, the bioactive compounds from their four symbiotic bacteria (Xenorhabdus bovienii, X. nematophila, X. kozodoii, and Photorhabdus laumondii subsp. laumondii, respectively) were tested as unfiltered ferment (UF) and cell-free supernatant (CFS) against the EGVM larval instars L1 and L3. All of the EPN species showed the capability of killing EGVM during the larval and pupal stages, particularly S. carpocapsae (mortalities of ~50% for L1 and >75% for L3 and L5 in only two days), followed by efficacy by S. feltiae. Similarly, the bacterial bioactive compounds produced higher larval mortality at three days against L1 (>90%) than L3 (~50%), making the application of UF more virulent than the application of CFS. Our findings indicate that both steinernematid species and their symbiotic bacterial bioactive compounds could be considered for a novel agro-technological approach to control L. botrana in vineyards. Further research into co-formulation with adjuvants is required to expand their viability when implemented for aboveground grapevine application.

Highlights

  • The vineyard agroecosystem is one of the main study perennial crops, covering7.5 M ha worldwide [1]

  • In the context of modern viticulture, we considered that the use of entomopathogenic nematodes (EPNs) as well as the use of the bioactive compounds that are obtained by their symbiotic bacteria could be an additional alternative to chemical treatments (Table 1) [32]

  • The European grapevine moth (EGVM) population used to test EPNs was obtained from the Public University of Navarra (Spain), but for the test with natural products generated by the bacterial symbionts, we had to employ new specimens, which were supplied by Dra

Read more

Summary

Introduction

The vineyard agroecosystem is one of the main study perennial crops, covering7.5 M ha worldwide [1]. Conventional viticulture continues to be the most pesticide-consuming agricultural system even though worldwide interest in organic farming has increased significantly since the last decade [3]. Organic wine production aims at producing high-quality grapes and wines while minimizing the use of inputs and improving environmental care. The control of pests [4,5] and diseases [6] needs new biotechnological approaches that facilitate this possibility. Even the accepted mean use of synthetic insecticides in conventional viticulture, grapevine moths are severe damage agents for grapes worldwide, causing yield losses and quality reduction. Lobesia botrana Denis & Schiffernüller (Lepidoptera: Tortricidae), known as the European grapevine moth (EGVM), is a relevant pest in European and the Middle Eastern vineyards. Current studies have reported EGVM as a new grape pest in the Americas: in Chile (2008) and Argentina (2009) [7,8] and in California (2010) [9]

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.