Abstract

Several studies have reported higher damage from insect herbivores to hybrid compared to inbred (pure line) rice. We used a collection of 20 hybrid and 12 inbred genotypes from diverse origins to test the hypotheses that hybrid rice susceptibility is due to (a) the hybrid plant type and/or (b) rice phylogeny. We challenged the genotypes with Nilaparvata lugans (BPH), Sogatella furcifera (WBPH) and Scirpophaga incertulas (YSB) in greenhouse and screenhouse bioassays and monitored herbivores in field plots. We used single nucleotide polymorphic (SNP) markers to assess genetic similarities between the genotypes and found that the hybrids and inbreds formed two distinct clusters regardless of origin. In the screenhouse, hybrids were more susceptible than inbreds to YSB; however, resistant hybrids and susceptible inbreds were also apparent from both the screenhouse and field plots. Plant biomass was the best predictor of susceptibility to YSB. Plant origin had a greater effect than plant type on susceptibility to BPH and WBPH. WBPH was the most abundant planthopper in the field plots where numbers were highly correlated with planthopper fitness in the greenhouse bioassays. Our results provide evidence that high-yielding hybrids that are relatively resistant to herbivores can be achieved through careful breeding. The avoidance of susceptible genotypes during breeding should remain a key element of integrated rice pest management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.