Abstract
Attention-deficit/hyperactivity disorder (ADHD) is characterized by difficulty in acting in a goal-directed manner. While most environments require a sequence of actions for goal attainment, ADHD was never studied in the context of value-based sequence learning. Here, we made use of current advancements in hierarchical reinforcement-learning algorithms to track the internal value and choice policy of individuals with ADHD performing a three-stage sequence learning task. Specifically, 54 participants (28 ADHD, 26 controls) completed a value-based reinforcement-learning task that allowed us to estimate internal action values for each trial and stage using computational modeling. We found attenuated sensitivity to action values in ADHD compared to controls, both in choice and reaction-time variability estimates. Remarkably, this was found only for first-stage actions (i.e., initiatory actions), while for actions performed just before outcome delivery the two groups were strikingly indistinguishable. These results suggest a difficulty in following value estimation for initiatory actions in ADHD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.