Abstract

The solar system galactic frontier—the region where the expanding solar wind meets the surrounding galactic medium—remains poorly explored. The sheer size of the essentially asymmetric heliosphere calls for remote techniques to probe the properties of its global time-varying three-dimensional boundary. The Interstellar Boundary Explorer (IBEX) mission (launch in 2008) will image the region between the termination shock and the heliopause, the heliospheric sheath, in fluxes of energetic neutral atoms. Global imaging in extreme ultraviolet (EUV) will likely be the next logical step in remote exploration of the galactic frontier from 1 AU. Imaging in EUV will establish directional and spectral properties of (1) the glow of singly charged helium ( He + ) ions in the interstellar and solar wind plasmas; (2) emissions of hot plasma in the Local Bubble; and (3) characteristic emissions of the solar wind. Global imaging with ultrahigh sensitivity and ultrahigh spectral resolution will map the heliopause and reveal the three-dimensional flow pattern of the solar wind, including the flow over the Sun's poles. This article presents the emerging concept of the experiment and space mission for heliosphere global imaging in EUV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.