Abstract
Wastewater treatment is a critical process for ensuring water quality and public health, particularly in the context of increasing environmental challenges such as pollution and water scarcity. Artificial intelligence (AI) has emerged as a transformative technology capable of optimizing various wastewater treatment processes, such as contaminant removal, energy consumption, and cost-efficiency. This study presents a comprehensive bibliometric analysis of AI applications in wastewater treatment, utilizing data from Scopus and Web of Science covering 4335 publications from 1985 to 2024. Utilizing machine learning techniques such as neural networks, fuzzy logic, and genetic algorithms, the analysis reveals key trends in the role of the AI in optimizing wastewater treatment processes. The results show that AI has increasingly been applied to solve complex problems like membrane fouling, nutrient removal, and biofouling control. Regional contributions highlight a strong focus on advanced oxidation processes, microbial sludge treatment, and energy optimization. The Latent Dirichlet Allocation (LDA) model further identifies emerging topics such as real-time process monitoring and AI-driven effluent prediction as pivotal areas for future research. The findings provide valuable insights into the current state and future potential of AI technologies in wastewater management, offering a roadmap for researchers exploring the integration of AI to address sustainability challenges in the field.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have