Abstract

People with Parkinson's Disease (PD) often show reduced anticipatory postural adjustments (APAs) before voluntary steps, impacting their stability. The specific subphase within the APA stage contributing significantly to fall risk remains unclear. We analyzed center of pressure (CoP) trajectory parameters, including duration, length, and velocity, throughout gait initiation. This examination encompassed both the postural phase, referred to as anticipatory postural adjustment (APA) (APA1, APA2a, APA2b), and the subsequent locomotor phases (LOC). Participants were instructed to initiate a step and then stop (initiating a single step). Furthermore, we conducted assessments of clinical disease severity using the Unified Parkinson's Disease Rating Scale (UPDRS) and evaluated fall risk using Tinetti gait and balance scores during off-medication periods. Freezing of gait (FOG) was observed in 18 out of 110 participants during the measurement of CoP trajectories. The Ramer-Douglas-Peucker algorithm successfully identified CoP displacement trajectories in 105 participants (95.5%), while the remaining 5 cases could not be identified due to FOG. Tinetti balance and gait score showed significant associations with levodopa equivalent daily dose, UPDRS total score, disease duration, duration (s) in APA2a (s) and LOC (s), length in APA1 (cm) and APA2b (cm), mediolateral velocity in APA1 (X) (cm/s), APA2a (X) (cm/s), APA2b (X) (cm/s) and LOC (X) (cm/s), and anterior-posterior velocity in APA2a (Z) (cm/s) and APA2b (Z) (cm/s). Multiple linear regression revealed that only duration (s) in APA2a and UPDRS total score was independently associated with Tinetti gait and balance score. Further mediation analysis showed that the duration (s) in APA2a served as a mediator between UPDRS total score and Tinetti balance and gait score (Sobel test, p = 0.047). APA2 subphase duration mediates the link between disease severity and fall risk in PD, suggesting that longer APA2a duration may indicate reduced control during gait initiation, thereby increasing fall risk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.