Abstract

Background and aims Numerous microorganisms have been isolated from trinitrotoluene (TNT)-contaminated soils, however TNT tends to persist, indicating that the microbial biomass or activity is insufficient for degradation. Deep-rooting trees at military sites have been found to take-up contaminants from groundwater, and the extensive root and endosphere provide ideal niches for microbial TNT-transformations. Methods We characterised the rhizosphere, root endosphere and endo-phyllosphere bacteria of Acer pseudoplatanus growing at a historically TNTcontaminated location, using 16S rRNA gene fingerprinting, bacteria isolation, oxidoreductase gene-cloning, in planta growth-promotion (PGP) tests, inoculation, plant physiology measurements and microscopy. Results Based on terminal-restriction-fragment-lengthpolymorphism analysis, bulk soil and rhizosphere samples were highly clustered. Proteo- and Actinobacteria dominated the rhizosphere and root endosphere, whereas Alphaproteobacteria were more abundant in shoots and Actinobacteria in leaves. We isolated multiple PGPbacteria and cloned 5 flavin-oxidoreductases belonging to the Old Yellow Enzyme family involved in TNT

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call