Abstract

To study the correlation between root microbiome and its community structure and the health, survival, and growth of its host which is the key to solve the problem of the diversity relationship between wild plants and root microorganism. In this study, we used high-throughput techniques of next generation sequencing (NGS) which was applied to study the endophytic and rhizosphere bacterial and fungal community in hulless barley (Hordeum vulgare) plants, by assessing its PCR amplicon of 16S rDNA sequences and ITS region. The results of the principal component analysis (PCA) showed that bacterial phyla Proteobacteria, Actinobacteria, and Acidobacteria dominate the bacterial community and that the phyla of Ascomycota and Basidiomycota dominate the mycobiota community in the root-soil interface of hulless barley. In both 16S and ITS data, the alpha diversity in bulk soil samples was significantly higher than that of rhizosphere and root samples, and root sample was least diverse, suggesting the microbial selection from the plant host. Beta diversity analysis indicated a clear separation from samples with different sample types (bulk soil, rhizosphere, and root samples). Lastly, the overall microbiota profile and differentially presented taxa were studied to assess the function. It can be concluded that the microbial diversity of wild hulless barley in different soil samples was significantly different and related to host genotypes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call