Abstract

The Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) unconventional superconductors attract renewed interest in recent years. However, an unambiguous experimental demonstration of the FFLO state is hindered by the stringent requirements for its realization. In this paper, we explore the relationship between the magnetic frustration and the emergence of the FFLO state on an anisotropic triangular lattice, based on the self-consistent calculation of the Bogoliubov-de Gennes equations. We find that the required lower critical magnetic field to enter the FFLO state decreases with the increase of both the anisotropic ratio and the on-site Coulomb repulsive interaction. This demonstrates that it is easier to enter the FFLO state on the structurally frustrated triangular lattice in comparison with the square lattice, and suggests that the layered organic superconductors with a triangular lattice may be good candidates for exploring the FFLO state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.