Abstract

AbstractWe present an experimental and theoretical exploration of well‐dispersed, distinctively stable, fumed SiO2 crosslinked polyethylene (XLPE) nanocomposites. The mechanical properties of fumed SiO2 /XLPE nanocomposites were assessed with different concentrations of fumed SiO2, which had noticed that network morphology was immensely influential for the performance of mechanical properties. A reasonable exploration of micromechanical models of composites indicated that the theories of Nicolais–Narkis, and Pukanszky provided an excellent fit to yield strength data of the composites considering the effect of the interphase between XLPE and SiO2. Furthermore, it highlights that the experimental data can be superimposed with the static micromechanical models of Nicolais–Narkis, and Pukanszky. Owing to the proper dispersion of the SiO2 nanospheres in the XLPE matrix, the filler‐polymer interactions are found to be enhanced. Moreover, it resulted in the excellent insulation properties of the nanocomposites, which makes it a better candidate for electrical cable insulating materials. The combined results of structural characterizations by Fourier Transform Infrared Spectroscopy (FTIR), X‐Ray Diffraction (XRD), Differential Scanning Calorimeter (DSC), Dynamic Mechanical Analysis (DMA), Atomic Force, and Transmission Electron Microscopy (AFM, TEM) confirmed the role of fumed SiO2 as a reinforcing mediator in the current system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.