Abstract

Quercetin was evaluated as corrosion inhibitor for AA6063 in 0.5 M HCl solution by employing weight-loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDX), Atomic Force Microscopy (AFM), X-Ray photoelectron spectroscopy (XPS) techniques allied to quantum chemical studies. Electrochemical results substantiate that the inhibition efficacy of quercetin increases proportionally with the concentration of the inhibitor. The effect of temperature on the corrosion behavior of the alloy was studied in the range of 30–60 °C. Potentiodynamic polarization study confirms the mixed type of inhibition by quercetin with preferential control of the cathodic reaction. The adsorption of quercetin on alloy surface was explained through the Langmuir adsorption isotherm model. ΔG°ads values and its variation with the temperature ensured spontaneous adsorption through chemisorption and the process was endothermic. Further, quantum chemical parameters calculated from Density Functional Theory (DFT) method for quercetin, proved a perfect correlation between structure and corrosion inhibition efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.