Abstract

In this paper, we demonstrate the capabilities of Pleiades-1a imagery for very high resolution (VHR) crop yield estimation by utilizing the predictor variables from the horizontal-spectral information, through Normalized Difference Vegetation Indices (NDVI), and the vertical-volumetric crop characteristics, through the derivation of Crop Canopy Models (CCMs), from the stereo imaging capacity of the satellite. CCMs captured by Unmanned Aerial Vehicles are widely used in precision farming applications, but they are not suitable for the mapping of large or inaccessible areas. We further explore the spatiotemporal relationship of the CCMs and the NDVI for five observation dates during the growing season for eight selected crop fields in Germany with harvester-measured ground truth crop yield. Moreover, we explore different CCM normalization methods, as well as linear and non-linear regression algorithms, for the crop yield estimation. Overall, using the Extremely Randomized Trees regression, the combination of CCMs and NDVI achieves an R2 coefficient of determination of 0.92.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.