Abstract

Developing high-performance energy storage and conversion devices is critical for implementing renewable and sustainable energy technologies. Nanoporous Matériaux de l′Institut Lavoisier (MIL)-type metal–organic framework materials can accommodate porous carbonaceous substances, metal oxides, or chalcogenides or can be fashioned into porous composites. Several of these structures show great potential for use in energy storage devices. Most MILs include high-valent cations, such as iron, vanadium, and chromium, and can accommodate abundant redox-active species in their scaffolds. Substantial recent research on MIL-based lithium-ion-battery (LIB) electrodes has highlighted the synergistic impact of restructuring the MIL morphology on enhancing specific lithium uptake capacities. Several studies have also explored the rate capabilities of MIL-based electrodes with different energy storage mechanisms. In this review, advanced MIL-based composites for LIBs compatible with electric vehicles are comprehensively analyzed, focusing on achieving rapid charging and long-term cycling performance under high-current-loading conditions. The challenges, future prospects, and research directions for design and synthesis of MIL-based composites are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.