Abstract
This comprehensive research explores the starch isolated from four browntop millet cultivars to determine physicochemical, thermal, morphological, powder flow, pasting, and rheological properties. Significant variations (p ≤ 0.05) were observed among the cultivars. Aerated bulk density (ABD) and Tapped bulk density (TBD) values ranged from 0.476 g/mL (BTM4) to 0.591 g/mL (BTM1), and 0.591 g/mL (BTM1) to 0.476 g/mL (BTM4). Amylose content varied from 22.55% (BTM4) to 25.86% (BTM3), influencing gelling strength and film-forming properties. Water absorption capacity ranged from 1.78 g/g to 1.92 g/g, while oil absorption capacity varied from 2.20 g/g to 2.47 g/g. DSC analysis showed gelatinization temperatures (Tp, and Tc) ranging from 85.44–91.61 °C, and 147.08–154.21 °C, respectively. X-ray diffraction (XRD) patterns revealed A-type crystalline patterns, with relative crystallinity ranging from 22.66% (BTM3) to 27.81% (BTM2). Pasting properties exhibited variations among cultivars, with peak viscosity ranging from 2480 c P to 3119 cP, and pasting temperature from 77.50 °C to 82.35 °C. Rheological analysis indicated shear-thinning behavior. The findings offer insights into the diverse properties of browntop millet starch, contributing to its potential applications in various industries and potentially guiding future studies on browntop millet starch modifications and novel utilization.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have