Abstract

It has been suggested that cytarabine (Ara-C) induces toxicity via mitochondrial dysfunction and oxidative stress. Therefore, we hypothesized that mitochondrial protective agents and antioxidants can reduce cytarabine-induced neurotoxicity. For this purpose, 48male Wistar rats were assigned into eightequal groups include control group, Ara-C (70 mg/kg, i.p.) group, Ara-C plus betanin (25 mg/kg, i.p.) group, Ara-C plus vitamin D (500 U/kg, i.p.) group, Ara-C plus thymoquinone (0.5 mg/kg, i.p.) group, betanin group, vitamin group, and thymoquinone group. The activity of acetylcholinesterase (AChE), and butyrylcholinesterase (BChE), the concentrations of antioxidants (reduced glutathione and oxidized glutathione), oxidative stress (malondialdehyde) biomarkers, mitochondrial toxicity parameters as well as histopathological alteration in brain tissues were measured. Our results demonstrated that Ara-C exposure significantly declines the brain enzymes activity (AChE and BChE), levels of antioxidant biomarkers (GSH),and mitochondrial functions, but markedly elevate the levels of oxidative stress biomarkers (MDA) and mitochondrial toxicity. Almost all of the previously mentioned parameters (especially mitochondrial toxicity) were retrieved by betanin, vitamin D, and thymoquinone compared to Ara-C group. These findings conclusively indicate that betanin, vitamin D, and thymoquinone administration provide adequate protection against Ara-C-induced neurotoxicity through modulations of oxidative, antioxidant activities, and mitochondrial protective (mitoprotective) effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call