Abstract

In this research, an extensive exploration of bimetallic sulfide, CuZr2S4, is delved into. It involves the utilization of diethyldithiocarbamate as a sulfur source. The resulting thin film exhibits a well‐defined crystalline structure, characterized by an average crystallite size of 33 nm, indicating a commendable crystallinity of 87%. Bandgap energy through optical characterization is unveiled to be 2.5 eV, shedding light on the metal sulfide optical behavior. Furthermore, the elemental composition and chemical bonding of the thin film are elucidated using X‐ray photoelectron spectroscopy, revealing distinctive core‐level peaks associated with Cu 2p, Zr 3d, and S 2p. Electrochemical evaluations employing voltammetry measurements showcase remarkable specific capacitive performance, achieving an impressive value of 479 Fg−1. The thin film demonstrates exceptional stability over multiple cycles, underscoring its immense potential for diverse energy‐storage applications. A thorough assessment of the synthesized material's photocatalytic capabilities, namely its ability to degrade several types of environmental contaminants, is conducted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call