Abstract

BackgroundEmergence and spread of β-lactamase resistant Klebsiella pneumoniae have posed a serious threat, especially in paediatric patients globally. The present study focuses on explore drug resistance profile and molecular characterization of carbapenemase and extended-spectrum β-lactamase producing K. pneumoniae isolated from paediatric patients in Shenzhen, China.MethodsPresent study, a total of 31 isolates of multi-drug resistant K. pneumoniae were collected from Shenzhen Children’s Hospital, China during Jan 2014 to December 2015. ESBLs production was confirmed by using the combination disc diffusion method followed by antimicrobial susceptibility. In addition, β-lactamase encoding genes were determined by PCR assay and sequencing. The genotypic diversity and phylogenetic relationship were determined by multi-locus sequence typing (MLST) method and pulsed-field gel electrophoresis (PFGE).ResultsWe examined 31, unique K. pneumoniae isolates collected from 2014 and 2015 in Shenzhen Children’s Hospital, China. All the 31 isolates 100% were resistant to ceftazidime, ertapenem, ampicillin, cefazolin and ampicillin-sulbactam followed by ceftriaxone 94% (n = 29), aztreonam 89% (n = 26), cefepime 84% (n = 26), nitrofurantoin 75% (n = 24), piperacillin 52% (n = 16), and levofloxacin 49% (n = 15). Of the 31 β-lactamase gene coding isolates, blaCTX-M was mainly detected in about 100% (n = 31), followed by blaKPC 71% (n = 22), blaSHV 61% (n = 19), blaNDM 25% (n = 8), blaCYM 13% (n = 4), blaOXA-48 9% (n = 3), blaGES 9% (n = 3) and blaTEM 6% (n = 2). Seventeen distinct sequences type were observed with ST20 being mostly identified 16% (n = 5). Pulsed-field gel electrophoresis (PFGE) typing showed that identical profile for the isolates recovered from the Department of Intensive Care Unit and Department of Neurology of our hospital. Plasmid replicon typing result indicates the presence of IncFIS type as highest in all isolates as 61% (n = 19), followed by IncFIB 23% (n = 7), IncFIA and IncFIC 16% (n = 5) each.ConclusionOur study reports the occurrence and spread of extended β-lactamase K. pneumoniae ST20 and ST2407 for the first time, in Shenzhen, particularly in paediatric patients. To prevent and control the infection by limiting the spread of infection-causing organisms it is very crucial to detect the presence of resistant genes at an early stage.

Highlights

  • Klebsiella pneumoniae (K. pneumoniae) has most common pathogen intricate in healthcare-associated infections in children that cause a wide variety of infections consisting pneumonia, urinary tract infections, bloodstream infections, intra-abdominal infection and bacteraemia and such conditions treat by antibiotics [1,2,3]

  • Co-production of K. pneumoniae carbapenemase (KPC) and New Delhi Metallo-β lactamase (NDM) in K. pneumoniae was reported to have notably increased in Canada, USA, and China has reported a notable increase in the co-occurrence of KPC and NDM in K. pneumoniae while Africa reported having a major spread of oxacillinase type 48 (OXA-48) like producing strains [6]

  • All the ST20 isolates were recovered from the Department of Neurology and Department of Intensive Care Unit, the results indicated that K. pneumoniae ST20 is dominant in these two wards and a key transporter for the blaCTX-M-109 gene

Read more

Summary

Introduction

Klebsiella pneumoniae (K. pneumoniae) has most common pathogen intricate in healthcare-associated infections in children that cause a wide variety of infections consisting pneumonia, urinary tract infections, bloodstream infections, intra-abdominal infection and bacteraemia and such conditions treat by antibiotics [1,2,3]. Indiscriminate use of antibiotics has led to the global spread of extended-spectrum β-lactamases (ESBLs) and K. pneumoniae carbapenemase (KPC) in K. pneumoniae being reported globally [4]. Among paediatric cases from China, only NDM-producing K. pneumoniae is primarily reported in maximum cases despite the presence of wide-spread KPC-producing strains [7]. Co-existence of ESBLs and KPC in K. pneumoniae has world-wide dissemination causing life-threatening clinical outcomes in pediatric patients very no more data is available on the susceptibility and molecular characteristics of this pathogen in China. Emergence and spread of β-lactamase resistant Klebsiella pneumoniae have posed a serious threat, especially in paediatric patients globally. The present study focuses on explore drug resistance profile and molecular characterization of carbapenemase and extended-spectrum β-lactamase producing K. pneumoniae isolated from paediatric patients in Shenzhen, China

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call