Abstract
The relationship between the physical properties of metal is often very complex in nature with its chemistry and several other rolling parameters in operation. Non-linear regression models play a very important role in modelling the underlying mechanism, provided it is known. Artificial neural networks provide a wide class of general-purpose and flexible non-linear regression models. The most commonly used neural networks, called multi-layered perceptrons, can vary the complexity of the model from a simple parametric model to a highly flexible nonparametric model. In this particular work, an industry-based data set is used for learning and optimizing the neural network architecture using some well-known algorithms for prediction under neural-net systems. The outcome of the analysis is compared with the results achieved through empirical statistical modelling from its prediction error level and the knowledge of materials science.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have