Abstract

One infection method widely used by many gram-negative bacteria involves a protein nanomachine called the Type Three Secretion System (T3SS). The T3SS enables the transportation of bacterial “toxins” via a proteinaceous channel that directly links the cytosol of the bacteria and host cell. The channel from the bacteria is completed by a translocon pore formed by two proteins named the major and minor translocators. Prior to pore formation, the translocator proteins are bound to a small chaperone within the bacterial cytoplasm. This interaction is crucial to effective secretion. Here we investigated the specificity of the binding interfaces of the translocator–chaperone complexes from Pseudomonas aeruginosa via the selection of peptide and protein libraries based on its chaperone PcrH. Five libraries encompassing PcrH’s N-terminal and central α-helices were panned, using ribosome display, against both the major (PopB) and minor (PopD) translocator. Both translocators were shown to significantly enrich a similar pattern of WT and non-WT sequences from the libraries. This highlighted key similarities/differences between the interactions of the major and minor translocators with their chaperone. Moreover, as the enriched non-WT sequences were specific to each translocator, it would suggest that PcrH can be adapted to bind each translocator individually. The ability to evolve such proteins indicates that these molecules may provide promising anti-bacterial candidates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call