Abstract

Heavy metals (HMs) and ammonia nitrogen (AN) leaching from electrolytic manganese residue (EMR) result in the contamination of agricultural soils and water bodies. Batch and column leaching tests were conducted to simulate the release of HMs and AN in EMR during precipitation, as well as their migration and transformation in agricultural soils. The results show that Mn, AN, Cd, Ni, and Zn present in the EMR had high acidsoluble fraction (un-fixed AN) content, and the leachability of Mn and AN was significantly higher than that of other hazardous elements. The cumulative release of hazardous elements in the EMR stockpile was well-fitted (R2 > 0.95) by the HILL model. Significant HMs and AN accumulated in the agricultural soils after contamination from the EMR leachate. The pollution degree of HMs in agricultural soils was ranked as Mn > Ni > Pb ≈ Zn ≈ Cr > Cd. The acidsoluble fraction (un-fixed AN) content of Mn, Ni, Zn, and AN in agricultural soils increased significantly. The risk assessment code shows that the risk level of Mn in agricultural soils changed from medium to high; Ni and Zn in surface soils changed from low to medium. These results indicated that the leaching from EMR would significantly increase the ecological risk of HMs in surrounding agricultural soils, and the large release of AN would pose a great threat to aquatic systems if not properly addressed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call