Abstract
Enhancement of the mechanical and biological properties of dental restoration materials is of significant importance. Drawing inspiration from the architecture and mechanical properties of natural nacre, we employed a low-cost accumulative rolling process to develop resin-ceramic composites with suitable hardness and high toughness. Plate-like aluminum oxide powder with diameters of 5–10 μm and nano-zinc oxide (ZnO) with antibacterial properties were mixed as the ceramic phase of the composite. Aluminum oxide ceramic plates were stacked using an accumulative rolling process to achieve a consistent orientation, followed by sintering to obtain porous ceramic scaffolds. The ceramic scaffolds were subsequently immersed in methyl methacrylate resin to complete the fabrication of the biomimetic composites. The mechanical and biological properties of the composites were comprehensively tested. The composites had a suitable hardness (1.09–1.63 GPa), excellent flexural strength (156.7–167.8 MPa), and fracture toughness (KIC = 2.66–3.59 MPa m1/2). Biomimetic composites are expected to mitigate the wear of natural teeth without developing fractures or deformations, while also exhibiting excellent cytocompatibility and antibacterial activity. This study investigated the factors influencing crack propagation in fracture tests and provided insights into enhancing the toughness of dental restorative materials. The biomimetic resin-ceramic composites containing Zn developed in this study have the potential to be used as functional dental restoration materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.