Abstract
Impaired renal function can influence biomarker levels through mechanisms involving blood–brain barrier integrity and clearance pathways; however, the impact of variations within normal renal function remains unclear. The main aim of this study was to determine whether adjustment for the specific level of renal function is necessary when renal function remains within physiological levels. We studied n = 183 patients (NID n = 122; other neurological diseases n = 39; somatoform controls n = 22) who underwent lumbar puncture at University Hospital Frankfurt. Serum and cerebrospinal fluid (CSF) levels of neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), total tau protein (tTAU), and ubiquitin C-terminal hydrolase-L1 (UCHL1) were measured using the single molecule array (SIMOA) technique. Estimated glomerular filtration rate (eGFR) correlated negatively with CSF GFAP (r = −0.217, p = 0.004) and serum NfL (r = −0.164, p = 0.032). Patients with impaired renal function exhibited higher CSF NfL (p = 0.036) and CSF GFAP (p = 0.026) levels. However, these findings did not remain significant after adjusting for BMI and age. Importantly, in patients with normal renal function, no significant correlations with eGFR and biomarker levels were observed after adjustment. Our findings indicate that serum and CSF concentrations of NfL, GFAP, tTAU, and UCHL1 are not significantly affected by fluctuations in physiological kidney function but emphasize the importance of considering comorbidities in impaired renal function when interpreting biomarker levels.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have