Abstract

Electrospray Mass Spectrometry (ESMS) has been used as a tool to probe the reactivity of the metalloligand [Pt2(μ-Se)2(PPh3)4] with metal substrates, which lead to the formation of charged coordination complexes via loss of halides or other labile ligands. Among the numerous metal substrates used in the displacement reactions are Au(anpy)Cl2 (anpy = cyclometallated 2-anilinopyridyl), HgPhCl and Pb(NO3)2. Acid titration on the Lewis basic metalloligand leads to the identification and isolation of the doubly-protonated species, [Pt2(μ-SeH)2(PPh3)4]2+, whose sulfide analogue cannot be isolated. A three-step strategy is employed in the use of ESMS as a probe: (i) preliminary screening of the metalloligand with an array of acidic main group and transition group metal compounds, (ii) identification of potentially stable and isolable products formed in situ based on ion distribution and simulated isotope patterns and (iii) promising reactions are repeated on a laboratory scale, and target products are isolated and characterized. X-Ray diffraction studies have been performed on single crystals of [Pt2(μ-SeH)2(PPh3)4][ClO4]2, [Pt2(μ3-Se)2(PPh3)4(CdCl2)] and {Pt2(μ3-Se)2(PPh3)4[Pb(NO3)]}{NO3}. These results suggested that in general a parallel chemistry can be developed on the intermetallic selenides as on the sulfides. However, there are chemical and structural differences which are highlighted in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.