Abstract
Sleep plays a crucial role in maintaining overall health. However, various lifestyle factors significantly influence sleep quality and duration. Understanding the relationship between lifestyle choices and sleep health is crucial for individuals seeking to improve their sleep patterns. The purpose of this study is to provide valuable insights into the causes and effects of sleep disorders in order to help individuals make informed decisions to optimize their sleep health. This article implements the CatBoost gradient algorithm for predictive modeling. Among various models including K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Xtreme Gradient Boosting (XGBoost), Gradient Boosting Decision Tree (GBDT), Random Forest (RF), Decision Tree (DT), Logistic Regression (LR), Deep Neural Network (DNN), CatBoost shows better overall performance with an accuracy of 0.93, an Fl-score of 0.925, and a recall of 0.95. Through data analysis, Blood-pressure-Systolic, Blood-Pressure-Diastolic, and Stress Level are found to have the greatest impact on the model's output.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.