Abstract

BackgroundChinese indigenous rabbits have distinct characteristics, such as roughage resistance, stress resistance and environmental adaptability, which are of great significance to the sustainable development of the rabbit industry in China. Therefore, it is necessary to study the genetic diversity and population structure of this species and develop genomic resources.ResultsIn this study, we used restriction site-associated DNA sequencing (RAD-seq) to obtain 1,006,496 SNP markers from six Chinese indigenous rabbit breeds and two imported rabbit breeds. Jiuyishan and Fujian Yellow rabbits showed the highest nucleotide diversity (π) and decay of linkage disequilibrium (LD), as well as higher observed heterozygosity (Ho) and expected heterozygosity (He), indicating higher genetic diversity than other rabbits. The inbreeding coefficient (FIS) of New Zealand rabbits and Belgian rabbits was higher than that of other rabbits. The neighbour-joining (NJ) tree, principal component analysis (PCA), and population structure analysis of autosomes and Y chromosomes showed that Belgian, New Zealand, Wanzai, Sichuan White, and Minxinan Black rabbits clustered separately, and Fujian Yellow, Yunnan Colourful, and Jiuyishan rabbits clustered together. Wanzai rabbits were clearly separated from other populations (K = 3), which was consistent with the population differentiation index (FST) analysis. The selection signature analysis was performed in two populations with contrasting coat colours. With Sichuan White and New Zealand rabbits as the reference populations and Minxinan Black and Wanzai rabbits as the target populations, 408, 454, 418, and 518 genes with a selection signature, respectively, were obtained. Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed on the genes with a selection signature. The results showed that the genes with a selection signature were enriched in the melanogenesis pathway in all four sets of selection signature analyses.ConclusionsOur study provides the first insights into the genetics and genomics of Chinese indigenous rabbit breeds and serves as a valuable resource for the further effective utilization of the species.

Highlights

  • Chinese indigenous rabbits have distinct characteristics, such as roughage resistance, stress resistance and environmental adaptability, which are of great significance to the sustainable development of the rabbit industry in China

  • Population genetic diversity There were differences in the number of SNPs between the six Chinese indigenous rabbit breeds and the two imported rabbit breeds, and the number of SNPs was recorded in the following order: Jiuyishan rabbits > Fujian Yellow rabbits > New Zealand rabbits > Sichuan White rabbits > Minxinan Black rabbits > Wanzai rabbits > Belgian rabbits > Yunnan Colourful rabbits

  • Based on the first two PCs (PC1 = 5.59%, PC2 = 4.10%), we found that Belgian, New Zealand, Wanzai, Sichuan White, and Minxinan Black rabbits clustered separately, and Fujian Yellow, Yunnan Colourful, and Jiuyishan rabbits grouped together (Fig. 3)

Read more

Summary

Introduction

Chinese indigenous rabbits have distinct characteristics, such as roughage resistance, stress resistance and environmental adaptability, which are of great significance to the sustainable development of the rabbit industry in China. It is necessary to study the genetic diversity and population structure of this species and develop genomic resources. In China, there are approximately 20 indigenous and recently imported rabbit breeds, mainly distributed in Sichuan, Shandong, Henan, and other provinces [2]. It is necessary to study the genetic diversity of Chinese indigenous rabbits and protect this breed resource. Ren et al used the genome-wide SNPs of 104 rabbits of four Chinese indigenous breeds (Sichuan White rabbit: 30, Tianfu Black rabbit: 34, Fujian Yellow rabbit: 32 and Fujian Black rabbit: 8) to systematically study their genetic diversity and population structure. The genetic analysis of Chinese indigenous rabbit breeds using RAD-seq has not been well studied

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call