Abstract

A GIS approach and HJ-1B images were employed to determine the effect of landscape structure on aerosol optical depth (AOD) patterns. Landscape metrics, fractal analysis and contribution analysis were proposed to quantitatively illustrate the impact of land use on AOD patterns. The high correlation between the mean AOD and landscape metrics indicates that both the landscape composition and spatial structure affect the AOD pattern. Additionally, the fractal analysis demonstrated that the densities of built-up areas and bare land decreased from the high AOD centers to the outer boundary, but those of water and forest increased. These results reveal that the built-up area is the main positive contributor to air pollution, followed by bare land. Although bare land had a high AOD, it made a limited contribution to regional air pollution due to its small spatial extent. The contribution analysis further elucidated that built-up areas and bare land can increase air pollution more strongly in spring than in autumn, whereas forest and water have a completely opposite effect. Based on fractal and contribution analyses, the different effects of cropland are ascribed to the greater vegetation coverage from farming activity in spring than in autumn. The opposite effect of cropland on air pollution reveals that green coverage and human activity also influence AOD patterns. Given that serious concerns have been raised regarding the effects of built-up areas, bare land and agricultural air pollutant emissions, this study will add fundamental knowledge of the understanding of the key factors influencing urban air quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call