Abstract
In this paper, the coupled vibration behavior of cylindrical-conical and cylindrical-exponential ultrasonic concentrators for efficient energy transfer is investigated. A theoretical model is developed to overcome the limitations of traditional one-dimensional theories that neglect the influence of height in the study of cylindrical concentrator vibration. Employing the equivalent elasticity method, the coupled vibration is considered as an interaction between longitudinal and plane radial vibrations. By establishing radial and longitudinal equivalent circuits with their corresponding input impedances, resonance frequency equations and the radial displacement amplification factor are derived. The effects of the radial thickness and the height-to-radius ratio on the characteristic parameters are presented for optimization designs. Numerical simulations are conducted to analyze vibrational modes and validate the theoretical findings. This study enhances the understanding of the vibration mechanism of cylindrical concentrators and provides valuable insights for selecting suitable cross-sections to improve performance and effectiveness in practical applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have