Abstract

The aggregation of amyloid-beta (Aβ) peptides into cross-β structures forms a variety of distinct fibril conformations, potentially correlating with variations in neurodegenerative disease progression. Recent advances in techniques such as X-ray crystallography, solid-state NMR, and cryo-electron microscopy have enabled the development of high-resolution molecular structures of these polymorphic amyloid fibrils, which are either grown in vitro or isolated from human and transgenic mouse brain tissues. This article reviews our current understanding of the structural polymorphisms in amyloid fibrils formed by Aβ40 and Aβ42, as well as disease-associated mutants of Aβ peptides. The aim is to enhance our understanding of various molecular interactions, including hydrophobic and ionic interactions, within and among cross-β structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call