Abstract

In order to explore the combustion performance of a non-road air-cooled two-cylinder turbocharged diesel engine, an experiment on the effects of engine compression ratio, combustion chamber shape and injection timing were systematically conducted in this study. Moreover, the effects of intake air conditions on combustion performance were numerically investigated using the one-dimensional simulation platform. The findings of this study could help provide new insights for promoting the sustainable development of diesel engines used in generator sets. The results show that the increase in intake air temperature can delay the combustion center of gravity and improve the combustion performance and the sustainability of diesel engines. The decrease in intake air pressure leads to a reduction in oxygen amount during the combustion process, thus causing the deterioration of cylinder pressure and combustion performance. By modifying the combustion chamber, the ignition delay and combustion duration are each extended by 1.6 degrees and 4.2 degrees under 100% engine load. The ignition delay and combustion duration are not obviously affected by modifying the combustion chamber shape under 25% and 50% loads. By increasing the compression ratio from 19.5 to 20.5, the ignition delay and combustion duration are shortened, which could enhance the cylinder pressure and heat release rate. However, reducing the compression ratio from 19.5 to 18.5 could significantly decrease the heat release rate. Under middle and low loads, combustion duration is less affected by injection timing. Under 100% load, the peak cylinder pressure increases to 11.4 MPa, and the ignition delay is shortened by advancing injection timing from −17 °CA to −20 °CA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.