Abstract
During the long-term interaction between plants and phytophagous insects, plants generate diverse plant secondary metabolites (PSMs) to defend against insects, whereas insects persistently cause harm to plants by detoxifying PSMs. Xanthotoxin is an insect-resistant PSM that is widely found in plants. However, the understanding of detoxification mechanism of xanthotoxin in insects is still limited at present. In this study, RNA-seq analysis showed that uridine diphosphate (UDP)-glycosyltransferases (UGTs) and cap 'n' collar isoform C (CncC) signaling pathway were specifically retrieved from the midgut and fat body of xanthotoxin-administrated Spodoptera litura larvae. The larvae were sensitive to xanthotoxin when the transcriptional expression and enzyme activity of UGTs were inhibited. Bacteria co-expressing UGT had a high survival rate after exposure to xanthotoxin and displayed high metabolic activity to xanthotoxin, which indicated that UGTs were involved in xanthotoxin detoxification. As the pivotal transcription factors, RNA interference against CncC and its partner, muscle aponeurosis fibromatosis isoform K (MafK), reduced larval tolerance to xanthotoxin as well as UGT expressional levels. Dual-luciferase reporter assay demonstrated that UGT promoter activity was activated by CncC and MafK, and was suppressed once CncC/MafK binding site was mutated. This study revealed that CncC signaling pathway regulated UGT transcriptional expression to mediate xanthotoxin detoxification in S. litura, which will facilitate a better understanding of the adaptive mechanism of phytophagous insects to host plants and provide more valuable insecticide targets for pest control.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have