Abstract
BackgroundHuman dental pulp-derived stem cells (hDPSCs) have emerged as a promising source for adult stem cell-based regenerative medicine. Stage-specific embryonic antigen 3 (SSEA3) is a cell surface marker associated with Multilineage-differentiating stress-enduring (Muse) cells, a subpopulation of human bone marrow-derived stem cells (hBMSCs), known for their potent regenerative potential and safety profile. In this study, we investigated the influence of the prolonged culture period and the number of culture passages on the regenerative capacity of hDPSCs and explored the association between SSEA3 expression and their regenerative abilities. MethodshDPSCs were isolated and cultured for up to 20 passages. Cell proliferation, migration, and osteogenic, adipogenic and neurogenic differentiation potential were assessed at passages 5, 10, and 20. Flow cytometry and immunofluorescence were employed to analyze SSEA3 expression. RNA sequencing (RNA-seq) was performed on SSEA3-positive and SSEA3-negative hDPSCs to identify differentially expressed genes and associated pathways. ResultsOur findings demonstrated a progressive decline in hDPSCs proliferation and migration capacity with increasing passage number. Conversely, cell size exhibited a positive correlation with passage number. Early passage hDPSCs displayed superior osteogenic and adipogenic differentiation potential. Notably, SSEA3 expression exhibited a significant negative correlation with passage numbers, reflecting the observed decline in differentiation capacity. RNA-seq analysis revealed distinct transcriptional profiles between SSEA3-positive and SSEA3-negative hDPSCs. SSEA3-positive cells displayed upregulation of genes associated with ectodermal differentiation and downregulation of genes involved in cell adhesion. ConclusionsThis study elucidates the impact of passaging on hDPSC behavior and suggests SSEA3 as a valuable biomarker for evaluating stemness and regenerative potential. SSEA3-positive hDPSCs, functionally analogous to Muse cells, represent a promising cell population for developing targeted regenerative therapies with potentially improved clinical outcomes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.