Abstract

Understanding the intricate relationship between climate variables and the Normalized Difference Vegetation Index (NDVI) is essential for effective ecosystem management. This study focuses on the spatiotemporal dynamics of NDVI and its interaction with climate variables in the ecologically diverse Khyber Pakhtunkhwa (KPK) Province, Pakistan, from 2000 to 2022. The research methodology involves analyzing satellite images and meteorological datasets to examine NDVI and surface latent heat flux (SHF), total precipitation (TPP), temperature (T), soil temperature (ST), and total pressure (TP). KPK Province's ecological significance and complex climate-vegetation interactions drive the selection of this study area. The study uses multiple linear regression analysis to investigate how T, TPP, SHF, and TP influence NDVI. The Mann-Kendall test detects trends, with Sen's slope estimator quantifying trend magnitudes. Additionally, correlation coefficients provide insights into long-term changes and association strengths. The findings highlight a consistent upward trend in mean NDVI over the 23 years, revealing an overall increase in NDVI, particularly in vegetation-dense areas where it rose from 0.27 to 0.32. The research showed an annual growth rate of 0.84% in the entire area, with specific vegetated zones exhibiting a slightly lower rate of 0.80%. However, the average yearly increase in NDVI is higher in vegetation-specific zones (0.00237) compared to the whole area (0.00151). This increase in NDVI occurs alongside a statistically significant decrease in SHF and PPT, suggesting a complex adaptation of vegetation to changing climate conditions in the KPK Province. In contrast, SHF exhibits a statistically significant negative slope of −5.952e-06 (p < 0.05), indicating a pronounced downward trend. Similarly, Sen's slope estimate for precipitation demonstrates a significant negative trend of −0.0001 (p < 0.05), showing diminishing precipitation. The study uncovers intricate linkages between climate variables and vegetation dynamics within KPK Province. These insights have far-reaching implications, guiding decision-making in land management, conservation efforts, and global climate resilience strategies. Ultimately, the research underscores the critical role of data-driven approaches in shaping a greener and more sustainable future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call